Math 10B - Calculus of Several Variables II
Quiz 5 Make Up
Due June 3, 2011

Name: \qquad
Instructions: This will allow you to make up points for quiz 5 , raising your score to at most 9 out of 10. Do as many parts as you deem necessary. Each part is worth 2 points. This will be due in discussion on Friday at the beginning of class. Attach this as a coversheet to what you turn in and clearly indicate which problems you attempted by putting a 0 in the score boxes which you did not do the problem for.

1	2	3	4	5	Total
$/ 2$	$/ 2$	$/ 2$	$/ 2$	$/ 2$	$/ 10$

Problem 1. Verify that Stokes' theorem implies Green's theorem (including the technical assumptions). (Hint: In Stokes' theorem, take $\mathbf{F}(x, y, z)=(M(x, y), N(x, y), 0)$. That is, assume that \mathbf{F} is independend of z, and that its \mathbf{k}-component is zero.)

Problem 2. Give a proof of Stokes' theorem for smooth, parametrized surfaces $S=\mathbf{X}(D)$, where $\mathbf{X}: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$. To make the proof easier, assume that \mathbf{X} is of class \mathcal{C}^{2} and that is it one-one on D (in which case $\partial S=\mathbf{X}(\partial D)$).

Problem 3. Suppose that a surface is given in cylindrical coordinates by the equation $z=f(r, \theta)$, where (r, θ) varies through a region D in the r θ-plane where r is nonnegative. Show that the surface area of the surface is given by

$$
\iint_{D} \sqrt{1+\left(\frac{\partial f}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial f}{\partial \theta}\right)^{2}} r d r d \theta
$$

Problem 4. Show that the surface parametrized by:

$$
\left\{\begin{array}{l}
x=\left(a+\cos \frac{s}{2} \sin t-\sin \frac{s}{2} \sin 2 t\right) \cos s \\
y=\left(a+\cos \frac{s}{2} \sin t-\sin \frac{s}{2} \sin 2 t\right) \sin s \\
z=\sin \frac{s}{2} \sin t+\cos \frac{s}{2} \sin 2 t
\end{array}\right.
$$

is not orientable.

Problem 5. Let $f, g: R \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ be of class \mathcal{C}^{2}, and let D be a solid region in space contained in R, bounded by a piecewise smooth surface $S=\partial D$. Let S be oriented with outward normals (pointing away from D). Prove that:

$$
\iiint_{D} \nabla f \cdot \nabla g d V+\iiint_{D} f \nabla^{2} g d V=\oiint_{S} f \nabla g \cdot d \mathbf{S} .
$$

(Hint: Use Gauss' theorem.)

