Math 10B - Calculus of Several Variables II Quiz 5 Make Up Due June 3, 2011

Name: ____

Instructions: This will allow you to make up points for quiz 5, raising your score to at most 9 out of 10. Do as many parts as you deem necessary. Each part is worth 2 points. This will be due in discussion on Friday at the beginning of class. Attach this as a coversheet to what you turn in and clearly indicate which problems you attempted by putting a 0 in the score boxes which you did not do the problem for.

1	2	3	4	5	Total
/2	/2	/2	/2	/2	/10

Problem 1. Verify that Stokes' theorem implies Green's theorem (including the technical assumptions). (Hint: In Stokes' theorem, take $\mathbf{F}(x, y, z) = (M(x, y), N(x, y), 0)$. That is, assume that \mathbf{F} is independent of z, and that its **k**-component is zero.)

Problem 2. Give a proof of Stokes' theorem for smooth, parametrized surfaces $S = \mathbf{X}(D)$, where $\mathbf{X} : D \subset \mathbb{R}^2 \to \mathbb{R}^3$. To make the proof easier, assume that \mathbf{X} is of class \mathcal{C}^2 and that is it one-one on D (in which case $\partial S = \mathbf{X}(\partial D)$).

Problem 3. Suppose that a surface is given in cylindrical coordinates by the equation $z = f(r, \theta)$, where (r, θ) varies through a region D in the $r\theta$ -plane where r is nonnegative. Show that the surface area of the surface is given by

$$\iint_D \sqrt{1 + \left(\frac{\partial f}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial f}{\partial \theta}\right)^2 r dr d\theta}.$$

Problem 4. Show that the surface parametrized by:

$$\begin{cases} x = (a + \cos\frac{s}{2}\sin t - \sin\frac{s}{2}\sin 2t)\cos s\\ y = (a + \cos\frac{s}{2}\sin t - \sin\frac{s}{2}\sin 2t)\sin s\\ z = \sin\frac{s}{2}\sin t + \cos\frac{s}{2}\sin 2t \end{cases}$$

is not orientable.

Problem 5. Let $f, g : R \subset \mathbb{R}^3 \to \mathbb{R}$ be of class C^2 , and let D be a solid region in space contained in R, bounded by a piecewise smooth surface $S = \partial D$. Let S be oriented with outward normals (pointing away from D). Prove that:

$$\iiint_D \nabla f \cdot \nabla g \, dV + \iiint_D f \nabla^2 g \, dV = \oint_S f \nabla g \cdot d\mathbf{S}.$$

(Hint: Use Gauss' theorem.)